logo
ResearchBunny Logo
Single-cell guided prenatal derivation of primary fetal epithelial organoids from human amniotic and tracheal fluids

Medicine and Health

Single-cell guided prenatal derivation of primary fetal epithelial organoids from human amniotic and tracheal fluids

M. F. M. Gerli, G. Calà, et al.

This innovative research reveals a groundbreaking method using single-cell analysis of human amniotic fluid to isolate viable fetal epithelial stem cells. Conducted by a team of experts, including Mattia Francesco Maria Gerli and Giuseppe Calà, it opens new pathways for prenatal therapies and regenerative medicine, especially in cases like congenital diaphragmatic hernia.

00:00
00:00
~3 min • Beginner • English
Abstract
Isolation of tissue-specific fetal stem cells and derivation of primary organoids is limited to samples obtained from termination of pregnancies, hampering prenatal investigation of fetal development and congenital diseases. Therefore, new patient-specific in vitro models are needed. To this aim, isolation and expansion of fetal stem cells during pregnancy, without the need for tissue samples or reprogramming, would be advantageous. Amniotic fluid (AF) is a source of cells from multiple developing organs. Using single-cell analysis, we characterized the cellular identities present in human AF. We identified and isolated viable epithelial stem/progenitor cells of fetal gastrointestinal, renal and pulmonary origin. Upon culture, these cells formed clonal epithelial organoids, manifesting small intestine, kidney tubule and lung identity. AF organoids exhibit transcriptomic, protein expression and functional features of their tissue of origin. With relevance for prenatal disease modeling, we derived lung organoids from AF and tracheal fluid cells of congenital diaphragmatic hernia fetuses, recapitulating some features of the disease. AF organoids are derived in a timeline compatible with prenatal intervention, potentially allowing investigation of therapeutic tools and regenerative medicine strategies personalized to the fetus at clinically relevant developmental stages.
Publisher
Nature Medicine
Published On
Mar 04, 2024
Authors
Mattia Francesco Maria Gerli, Giuseppe Calà, Max Arran Beesley, Beatrice Sina, Lucinda Tullie, Kylin Yunyan Sun, Francesco Panariello, Federica Michielin, Joseph R. Davidson, Francesca Maria Russo, Brendan C. Jones, Dani Do Hyang Lee, Savvas Savvidis, Theodoros Xenakis, Ian C. Simcock, Anna A. Straatman-Iwanowska, Robert A. Hirst, Anna L. David, Christopher O'Callaghan, Alessandro Olivo, Simon Eaton, Stavros P. Loukogeorgakis, Davide Cacchiarelli, Jan Deprest, Vivian S. W. Li, Giovanni Giuseppe Giobbe, Paolo De Coppi
Tags
fetal stem cells
amniotic fluid
organoids
single-cell analysis
prenatal intervention
personalized therapies
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny