logo
ResearchBunny Logo
Predicting the synthesizability of crystalline inorganic materials from the data of known material compositions

Chemistry

Predicting the synthesizability of crystalline inorganic materials from the data of known material compositions

E. R. Antoniuk, G. Cheon, et al.

Explore the groundbreaking SynthNN, a deep learning model developed by Evan R. Antoniuk and colleagues, that revolutionizes the prediction of synthesizability in inorganic crystalline materials, outpacing traditional methods and experts alike in speed and accuracy.

00:00
00:00
Playback language: English
Citation Metrics
Citations
0
Influential Citations
0
Reference Count
0

Note: The citation metrics presented here have been sourced from Semantic Scholar and OpenAlex.

Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny