logo
ResearchBunny Logo
Predicting Synthesizability of Crystalline Materials via Deep Learning

Engineering and Technology

Predicting Synthesizability of Crystalline Materials via Deep Learning

A. Davariashtiyani, Z. Kadkhodaie, et al.

Discover how a deep-learning model leverages three-dimensional images of crystal structures to predict the synthesizability of hypothetical crystals. This groundbreaking research, conducted by Ali Davariashtiyani, Zahra Kadkhodaie, and Sara Kadkhodaei, showcases an innovative approach to identifying viable materials for battery electrodes and thermoelectric applications.

00:00
00:00
~3 min • Beginner • English
Abstract
Predicting the synthesizability of hypothetical crystals is challenging because of the wide range of parameters that govern materials synthesis. Yet, exploring the exponentially large space of novel crystals for any future application demands an accurate predictive capability for synthesis likelihood to avoid a haphazard trial-and-error. Typically, benchmarks of synthesizability are defined based on the energy of crystal structures. Here, we take an alternative approach to select features of synthesizability from the latent information embedded in crystalline materials. We represent the atomic structure of crystalline materials by three-dimensional pixel-wise images that are color-coded by their chemical attributes. The image representation of crystals enables the use of a convolutional encoder to learn the features of synthesizability hidden in structural and chemical arrangements of crystalline materials. Based on the presented model, we can accurately classify materials into synthesizable crystals versus crystal anomalies across a broad range of crystal structure types and chemical compositions. We illustrate the usefulness of the model by predicting the synthesizability of hypothetical crystals for battery electrode and thermoelectric applications.
Publisher
Communications Materials
Published On
Nov 18, 2021
Authors
Ali Davariashtiyani, Zahra Kadkhodaie, Sara Kadkhodaei
Tags
synthesizability
deep learning
crystal structures
convolutional encoder
battery electrodes
thermoelectric materials
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny