logo
ResearchBunny Logo
Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation

Medicine and Health

Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation

D. Viana, S. T. Walston, et al.

Discover cutting-edge advancements in flexible neural interfaces with our innovative nanoporous graphene-based technology. This groundbreaking research led by a team from the Catalan Institute of Nanoscience and Nanotechnology and other esteemed institutions demonstrates exceptional recording fidelity and biocompatibility in chronic studies.

00:00
00:00
~3 min • Beginner • English
Abstract
One of the critical factors determining the performance of neural interfaces is the electrode material used to establish electrical communication with the neural tissue, which needs to meet strict electrical, electrochemical, mechanical, biological and microfabrication compatibility requirements. This work presents a nanoporous graphene-based thin-film technology and its engineering to form flexible neural interfaces. The developed technology allows the fabrication of small microelectrodes (25 µm diameter) while achieving low impedance (~25 kΩ) and high charge injection (3–5 mC cm−2). In vivo brain recording performance assessed in rodents reveals high-fidelity recordings (signal-to-noise ratio >10 dB for local field potentials), while stimulation performance assessed with an intrafascicular implant demonstrates low current thresholds (<100 µA) and high selectivity (>0.8) for activating subsets of axons within the rat sciatic nerve innervating tibialis anterior and plantar interosseous muscles. Furthermore, the tissue biocompatibility of the devices was validated by chronic epicortical (12 week) and intraneural (8 week) implantation. This work describes a graphene-based thin-film microelectrode technology and demonstrates its potential for high-precision and high-resolution neural interfacing.
Publisher
Nature Nanotechnology
Published On
Apr 01, 2024
Authors
Damià Viana, Steven T. Walston, Eduard Masvidal-Codina, Xavi Illa, Bruno Rodríguez-Meana, Jaume del Valle, Andrew Hayward, Abbie Dodd, Thomas Loret, Elisabet Prats-Alfonso, Natàlia de la Oliva, Marie Palma, Elena del Corro, María del Pilar Bernicola, Elisa Rodríguez-Lucas, Thomas Gener, Jose Manuel de la Cruz, Miguel Torres-Miranda, Fikret Taygun Duvan, Nicola Ria, Justin Sperling, Sara Martí-Sánchez, Maria Chiara Spadaro, Clément Hébert, Sinead Savage, Jordi Arbiol, Anton Guimerà-Brunet, M. Victoria Puig, Blaise Yvert, Xavier Navarro, Kostas Kostarelos, Jose A. Garrido
Tags
nanoporous graphene
flexible neural interfaces
microelectrodes
biocompatibility
in vivo tests
stimulation
low impedance
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny