logo
ResearchBunny Logo
Myelin dysfunction drives amyloid-β deposition in models of Alzheimer's disease

Medicine and Health

Myelin dysfunction drives amyloid-β deposition in models of Alzheimer's disease

C. Depp, T. Sun, et al.

Explore groundbreaking research that reveals how age-dependent myelin defects may contribute to Alzheimer's disease. This study by Constanze Depp and colleagues identifies myelin dysfunction as a key factor in promoting amyloid plaque formation, emphasizing the potential of improving oligodendrocyte health to delay the progression of AD.

00:00
00:00
~3 min • Beginner • English
Abstract
The incidence of Alzheimer’s disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths, the latter of which is associated with secondary neuroinflammation. As oligodendrocytes support axonal energy metabolism and neuronal health, we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-β (Aβ) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aβ-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Surprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aβ plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.
Publisher
Nature
Published On
Jun 08, 2023
Authors
Constanze Depp, Ting Sun, Andrew Octavian Sasmita, Lena Spieth, Stefan A. Berghoff, Taisiia Nazarenko, Katharina Overhoff, Agnes A. Steixner-Kumar, Swati Subramanian, Sahab Arinrad, Torben Ruhwedel, Wiebke Möbius, Sandra Göbbels, Gesine Saher, Hauke B. Werner, Alkmini Damkou, Silvia Zampar, Oliver Wirths, Maik Thalmann, Mikael Simons, Takashi Saito, Takaomi Saido, Dilja Krueger-Burg, Riki Kawaguchi, Michael Willem, Christian Haass, Daniel Geschwind, Hannelore Ehrenreich, Ruth Stassart, Klaus-Armin Nave
Tags
Alzheimer's disease
myelin dysfunction
amyloid-β
neuroinflammation
oligodendrocytes
microglia
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny