logo
ResearchBunny Logo
Combining single-cell RNA sequencing and population-based studies reveals hand osteoarthritis-associated chondrocyte subpopulations and pathways

Medicine and Health

Combining single-cell RNA sequencing and population-based studies reveals hand osteoarthritis-associated chondrocyte subpopulations and pathways

H. Li, X. Jiang, et al.

Discover groundbreaking insights into hand osteoarthritis from a study using single-cell RNA sequencing. Researchers identified a novel inflammatory chondrocyte subpopulation and highlighted the crucial role of ferroptosis in this condition, potentially paving the way for future therapies. This fascinating research was conducted by Hui Li, Xiaofeng Jiang, Yongbing Xiao, Yuqing Zhang, Weiya Zhang, Michael Doherty, Jacquelyn Nestor, Changjun Li, Jing Ye, Tingting Sha, Houchen Lyu, Jie Wei, Chao Zeng, and Guanghua Lei.

00:00
00:00
~3 min • Beginner • English
Abstract
Hand osteoarthritis is a common heterogeneous joint disorder with unclear molecular mechanisms and no disease-modifying drugs. In this study, we performed single-cell RNA sequencing analysis to compare the cellular composition and subpopulation-specific gene expression between cartilage with macroscopically confirmed osteoarthritis (n = 5) and cartilage without osteoarthritis (n = 5) from the interphalangeal joints of five donors. Of 105 142 cells, we identified 13 subpopulations, including a novel subpopulation with inflammation-modulating potential annotated as inflammatory chondrocytes. Fibrocartilage chondrocytes exhibited extensive alteration of gene expression patterns in osteoarthritic cartilage compared with nonosteoarthritic cartilage. Both inflammatory chondrocytes and fibrocartilage chondrocytes showed a trend toward increased numbers in osteoarthritic cartilage. In these two subpopulations from osteoarthritic cartilage, the ferroptosis pathway was enriched, and expression of iron overload-related genes, e.g., FTH1, was elevated. To verify these findings, we conducted a Mendelian randomization study using UK Biobank and a population-based cross-sectional study using data collected from Xiangya Osteoarthritis Study. Genetic predisposition toward higher expression of FTH1 mRNA significantly increased the risk of hand osteoarthritis (odds ratio = 1.07, 95% confidence interval: 1.02–1.11) among participants (n = 332 668) in UK Biobank. High levels of serum ferritin (encoded by FTH1), a biomarker of body iron overload, were significantly associated with a high prevalence of hand osteoarthritis among participants (n = 1241) of Xiangya Osteoarthritis Study (P-for-trend = 0.037). In conclusion, our findings indicate that inflammatory and fibrocartilage chondrocytes are key subpopulations and that ferroptosis may be a key pathway in hand osteoarthritis, providing new insights into the pathophysiology and potential therapeutic targets of hand osteoarthritis.
Publisher
Bone Research
Published On
Nov 02, 2023
Authors
Hui Li, Xiaofeng Jiang, Yongbing Xiao, Yuqing Zhang, Weiya Zhang, Michael Doherty, Jacquelyn Nestor, Changjun Li, Jing Ye, Tingting Sha, Houchen Lyu, Jie Wei, Chao Zeng, Guanghua Lei
Tags
hand osteoarthritis
inflammatory chondrocytes
ferroptosis
single-cell RNA sequencing
cellular composition
gene expression
fibrocartilage
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny