logo
ResearchBunny Logo
Spooky action at a global distance: analysis of space-based entanglement distribution for the quantum internet

Physics

Spooky action at a global distance: analysis of space-based entanglement distribution for the quantum internet

S. Khatri, A. J. Brady, et al.

Explore the cutting-edge advances in quantum communication with groundbreaking research by Sumeet Khatri, Anthony J. Brady, Renée A. Desporte, Manon P. Bart, and Jonathan P. Dowling. This study unveils a global quantum internet powered by satellites, ensuring continuous entanglement distribution to ground stations. Discover the balance between satellite numbers and entanglement rates and how this transforms the future of quantum technology.

00:00
00:00
~3 min • Beginner • English
Abstract
Recent experimental breakthroughs in satellite quantum communications have opened up the possibility of creating a global quantum internet using satellite links. This approach appears to be particularly viable in the near term, due to the lower attenuation of optical signals from satellite to ground, and due to the currently short coherence times of quantum memories. The latter prevents ground-based entanglement distribution using atmospheric or optical-fiber links at high rates over long distances. In this work, we propose a global-scale quantum internet consisting of a constellation of orbiting satellites that provides a continuous, on-demand entanglement distribution service to ground stations. The satellites can also function as untrusted nodes for the purpose of long-distance quantum-key distribution. We develop a technique for determining optimal satellite configurations with continuous coverage that balances both the total number of satellites and entanglement-distribution rates. Using this technique, we determine various optimal satellite configurations for a polar-orbit constellation, and we analyze the resulting satellite-to-ground loss and achievable entanglement-distribution rates for multiple ground station configurations. We also provide a comparison between these entanglement-distribution rates and the rates of ground-based quantum repeater schemes. Overall, our work provides the theoretical tools and the experimental guidance needed to make a satellite-based global quantum internet a reality.
Publisher
npj Quantum Information
Published On
Jan 04, 2021
Authors
Sumeet Khatri, Anthony J. Brady, Renée A. Desporte, Manon P. Bart, Jonathan P. Dowling
Tags
quantum internet
satellites
entanglement distribution
ground stations
quantum repeater
global communication
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny