logo
ResearchBunny Logo
Personal exposures to traffic-related air pollution in three Canadian bus transit systems: the Urban Transportation Exposure Study

Environmental Studies and Forestry

Personal exposures to traffic-related air pollution in three Canadian bus transit systems: the Urban Transportation Exposure Study

K. V. Ryswyk, G. J. Evans, et al.

Discover the startling findings of traffic-related air pollution (TRAP) impacts on bus transit users in Canada's major cities, thanks to the research conducted by Keith Van Ryswyk, Greg J. Evans, and their colleagues. Learn how bus commuting contributes significantly to daily PM2.5 exposures and how newer bus technologies can enhance air quality for riders.

00:00
00:00
~3 min • Beginner • English
Abstract
Background Exposure to traffic-related air pollution (TRAP) is associated with increased incidence of several cardiopulmonary diseases. The elevated TRAP exposures of commuting environments can result in significant contributions to daily exposures. Objectives To assess the personal TRAP exposures (UFPs, BC, PM2.5, and PM10) of the bus transit systems of Toronto, Ottawa, and Vancouver, Canada. Personal exposure models estimated the contribution of bus commuting to daily TRAP exposures. Associations between bus type and riding exposures and bus stop/station type and waiting exposures were estimated. Results Bus commuting (4.6% of the day) contributed ~59% (SD = 15%), 60% (SD = 20%), and 57% (SD = 18%) of daily PM2.5-Ba and 70% (SD = 19%), 64% (SD = 15%), and 70% (SD = 15%) of daily PM2.5-Fe, in Toronto, Ottawa, and Vancouver, respectively. Enclosed bus stations were found to be hotspots of PM2.5 and BC. Buses with diesel particulate filters (DPFs) and hybrid diesel/electric propulsion were found to have significantly lower in-bus PM2.5, UFP, and BC relative to 1983–2003 diesel buses in each city with the exception of UFP in Vancouver. Significance Personal exposures for traffic-related air pollutants were assessed for three Canadian bus transit systems. In each system, bus commuting was estimated to contribute significantly toward daily exposures of fine-fraction Ba and Fe as well as BC. Exposures while riding were associated with bus type for several pollutants in each city. These associations suggest the use of hybrid diesel/electric buses equipped with diesel particulate filters have improved air quality for riders. Keywords Personal exposure; Bus transit; UFP; PM2.5; BC; Metals
Publisher
Journal of Exposure Science & Environmental Epidemiology
Published On
Jul 16, 2020
Authors
Keith Van Ryswyk, Greg J. Evans, Ryan Kulka, Liu Sun, Kelly Sabaliauskas, Mathieu Rouleau, Angelos T. Anastasopolos, Lance Wallace, Scott Weichenthal
Tags
traffic-related air pollution
bus transit users
PM2.5 exposure
barium
iron
diesel particulate filters
air quality
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny