logo
ResearchBunny Logo
Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots

Physics

Assessment of the errors of high-fidelity two-qubit gates in silicon quantum dots

T. Tanttu, W. H. Lim, et al.

Unlock the secrets of high-fidelity entangling operations in qubits! This groundbreaking research explores errors in silicon MOS quantum dot spin qubit processors and reveals how to achieve >99% fidelity in two-qubit gates. Conducted by a team of experts, this study paves the way for scalable, high-fidelity control strategies for quantum systems.

00:00
00:00
~3 min • Beginner • English
Abstract
Achieving high-fidelity entangling operations between qubits consistently is essential for the performance of multi-qubit systems. Solid-state platforms are particularly exposed to errors arising from materials-induced variability between qubits, which leads to performance inconsistencies. Here we study the errors in a spin qubit processor, tying them to their physical origins. We use this knowledge to demonstrate consistent and repeatable operation with above 99% fidelity of two-qubit gates in the technologically important silicon metal-oxide-semiconductor quantum dot platform. Analysis of the physical errors and fidelities in multiple devices over extended periods allows us to ensure that we capture the variation and the most common error types. Physical error sources include the slow nuclear and electrical noise on single qubits and contextual noise that depends on the applied control sequence. Furthermore, we investigate the impact of qubit design, feedback systems and robust gate design to inform the design of future scalable, high-fidelity control strategies. Our results highlight both the capabilities and challenges for the scaling-up of silicon spin-based qubits into full-scale quantum processors.
Publisher
Nature Physics
Published On
Nov 01, 2024
Authors
Tuomo Tanttu, Wee Han Lim, Jonathan Y. Huang, Nard Dumoulin Stuyck, Will Gilbert, Rocky Y. Su, MengKe Feng, Jesus D. Cifuentes, Amanda E. Seedhouse, Stefan K. Seritan, Corey I. Ostrove, Kenneth M. Rudinger, Ross C. C. Leon, Wister Huang, Christopher C. Escott, Kohei M. Itoh, Nikolay V. Abrosimov, Hans-Joachim Pohl, Michael L. W. Thewalt, Fay E. Hudson, Robin Blume-Kohout, Stephen D. Bartlett, Andrea Morello, Arne Laucht, Chih Hwan Yang, Andre Saraiva, Andrew S. Dzurak
Tags
quantum dots
qubits
entangling operations
high fidelity
silicon MOS
error analysis
quantum computing
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny