logo
ResearchBunny Logo
Abstract
A central challenge for cognitive science is to explain how abstract concepts are acquired from limited experience. This has often been framed in terms of a dichotomy between connectionist and symbolic cognitive models. Here, we highlight a recently emerging line of work that suggests a novel reconciliation of these approaches, by exploiting an inductive bias that we term the relational bottleneck. In that approach, neural networks are constrained via their architecture to focus on relations between perceptual inputs, rather than the attributes of individual inputs. We review a family of models that employ this approach to induce abstractions in a data-efficient manner, emphasizing their potential as candidate models for the acquisition of abstract concepts in the human mind and brain.
Publisher
Published On
Authors
Taylor W. Webb, Steven M. Frankland, Awni Altabaa, Simon Segert, Kamesh Krishnamurthy, Declan Campbell, Jacob Russin, Tyler Giallanza, Zack Dulberg, Randall O'Reilly, John Lafferty, Jonathan D. Cohen
Tags
cognitive science
abstract concepts
neural networks
relational bottleneck
data-efficient learning
symbolic models
connectionist models
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs—just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny