A central challenge for cognitive science is to explain how abstract concepts are acquired from limited experience. This has often been framed in terms of a dichotomy between connectionist and symbolic cognitive models. Here, we highlight a recently emerging line of work that suggests a novel reconciliation of these approaches, by exploiting an inductive bias that we term the relational bottleneck. In that approach, neural networks are constrained via their architecture to focus on relations between perceptual inputs, rather than the attributes of individual inputs. We review a family of models that employ this approach to induce abstractions in a data-efficient manner, emphasizing their potential as candidate models for the acquisition of abstract concepts in the human mind and brain.
Publisher
Published On
Authors
Taylor W. Webb, Steven M. Frankland, Awni Altabaa, Simon Segert, Kamesh Krishnamurthy, Declan Campbell, Jacob Russin, Tyler Giallanza, Zack Dulberg, Randall O'Reilly, John Lafferty, Jonathan D. Cohen
Tags
cognitive science
abstract concepts
neural networks
relational bottleneck
data-efficient learning
symbolic models
connectionist models
Related Publications
Explore these studies to deepen your understanding of the subject.