logo
ResearchBunny Logo
Spatial calibration and PM2.5 mapping of low-cost air quality sensors

Environmental Studies and Forestry

Spatial calibration and PM2.5 mapping of low-cost air quality sensors

H. Chu, M. Z. Ali, et al.

This study from Hone-Jay Chu, Muhammad Zeeshan Ali, and Yu-Chen He presents an innovative spatial calibration and mapping method for low-cost PM2.5 sensors, effectively tackling measurement discrepancies in humid conditions. The proposed spatial regression model significantly reduces bias and RMSE, enhancing air quality monitoring for communities and agencies.

00:00
00:00
~3 min • Beginner • English
Abstract
The data quality of low-cost sensors has received considerable attention and has also led to PM2.5 warnings. However, the calibration of low-cost sensor measurements in an environment with high relative humidity is critical. This study proposes an efficient calibration and mapping approach based on a real-time spatial model. The study carried out spatial calibration, which automatically collected measurements of low-cost sensors and the regulatory stations, and investigated the spatial varying pattern of the calibrated low-cost sensor data. The low-cost PM2.5 sensors are spatially calibrated based on reference-grade measurements at regulatory stations. Results showed that the proposed spatial regression approach can explain the variability of the biases from the low-cost sensors with an R-square value of 0.94. The spatial calibration and mapping algorithm can improve the bias and decrease to 39% of the RMSE when compared to the nonspatial calibration model. This spatial calibration and real-time mapping approach provide a useful way for local communities and governmental agencies to adjust the consistency of the sensor network for improved air quality monitoring and assessment.
Publisher
Scientific Reports
Published On
Dec 16, 2020
Authors
Hone-Jay Chu, Muhammad Zeeshan Ali, Yu-Chen He
Tags
PM2.5 sensors
spatial calibration
air quality monitoring
humidity
spatial regression
environmental assessment
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny