logo
ResearchBunny Logo
Single-cell transcriptomes identify patient-tailored therapies for selective co-inhibition of cancer clones

Medicine and Health

Single-cell transcriptomes identify patient-tailored therapies for selective co-inhibition of cancer clones

A. Lanevski, K. Nader, et al.

Discover how scTherapy, developed by Aleksandr Lanevski and colleagues, uses machine learning and single-cell transcriptomic profiles to redefine cancer treatment strategies. This innovative approach outputs tailored multi-targeting therapies that show not only efficacy but also low toxicity for patients battling advanced malignancies like AML and HGSC.

00:00
00:00
~3 min • Beginner • English
Abstract
Intratumoral cellular heterogeneity necessitates multi-targeting therapies for improved clinical benefits in advanced malignancies. However, systematic identification of patient-specific treatments that selectively co-inhibit cancerous cell populations poses a combinatorial challenge, since the number of possible drug-dose combinations vastly exceeds what could be tested in patient cells. Here, we describe a machine learning approach, scTherapy, which leverages single-cell transcriptomic profiles to prioritize multi-targeting treatment options for individual patients with hematological cancers or solid tumors. Patient-specific treatments reveal a wide spectrum of co-inhibitors of multiple biological pathways predicted for primary cells from heterogenous cohorts of patients with acute myeloid leukemia and high-grade serous ovarian carcinoma, each with unique resistance patterns and synergy mechanisms. Experimental validations confirm that 96% of the multi-targeting treatments exhibit selective efficacy or synergy, and 83% demonstrate low toxicity to normal cells, highlighting their potential for therapeutic efficacy and safety. In a pan-cancer analysis across five cancer types, 25% of the predicted treatments are shared among the patients of the same tumor type, while 19% of the treatments are patient-specific. Our approach provides a widely-applicable strategy to identify personalized treatment regimens that selectively co-inhibit malignant cells and avoid inhibition of non-cancerous cells, thereby increasing their likelihood for clinical success.
Publisher
Nature Communications
Published On
Oct 03, 2024
Authors
Aleksandr Lanevski, Kristen Nader, Kyriaki Driva, Wojciech Senkowski, Daria Bulanova, Lidia Moyano-Galceran, Tanja Ruokoranta, Heikki Kuusanmäki, Nemo Ikonen, Philipp Sergeev, Markus Vähä-Koskela, Anil K. Giri, Anna Vähärautio, Mika Kontro, Kimmo Porkka, Esa Pitkänen, Caroline A. Heckman, Krister Wennerberg, Tero Aittokallio
Tags
scTherapy
machine learning
single-cell transcriptomics
multi-targeting therapies
cancer treatment
AML
HGSC
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny