logo
ResearchBunny Logo
Optimization of the spherical integrity for sustained-release alginate microcarriers-encapsulated doxorubicin by the Taguchi method

Medicine and Health

Optimization of the spherical integrity for sustained-release alginate microcarriers-encapsulated doxorubicin by the Taguchi method

C. T. Pan, S. T. Chien, et al.

This groundbreaking study by C. T. Pan and colleagues delves into optimizing biodegradable calcium alginate microcarriers for effective and sustained doxorubicin delivery in hepatocellular carcinoma treatment. Achieving uniformity and extending drug release for two weeks while maintaining microcarrier non-toxicity underscores a promising advancement in transarterial chemoembolization methodologies.

00:00
00:00
~3 min • Beginner • English
Abstract
This study aimed to develop biodegradable calcium alginate microcarriers with uniform particle size and spherical integrity for sustained-release targeting transarterial chemoembolization. To determine related parameters including the ratio of cross-linking volume (sodium alginate: CaCl₂), concentrations of sodium alginate and CaCl₂ solutions, collection distance, flow rate, stirring speed, syringe needle diameter and hardening time to fabricate the microcarriers, the Taguchi method was applied. Using different conditions, a total of 18 groups were prepared. The average size of microspheres from different groups was estimated as ~2 mm (range 1.1 to 1.6 mm). Signal-to-noise ratio analysis showed the optimal spherical integrity (F1) achieved when the above parameters were designed as 0.1, 2.5 wt%, 6 wt%, 8 cm, 30 mL/h, 150 rpm, 0.25 mm and 2 h, respectively. The best (F1), middle (F2) and worst (F3) groups were used for further experiments. Fourier-transform infrared spectroscopy spectrum showed that F1, F2 and F3 conformations were distinct from original sodium alginate. Drug-loaded calcium alginate microcarriers demonstrated rougher surfaces compared to microspheres without drug under transmission electron microscopy. Compared to pH 7.4, swelling rates in PBS were decreased at pH 6.5. Encapsulation and loaded efficiencies of the Dox-loaded microcarriers were estimated as ~40.617% and ~3.517%. In vitro experiments indicated that the F1 Dox-loaded microcarriers provide a well sustained-release efficacy for about two weeks at 37 °C in PBS. Treatments of calcium alginate microcarriers without the Dox in two distinct hepatocellular carcinoma-derived cell lines, Huh-7 and Hep-3B, indicated that these microcarriers were non-toxic. The Dox-loaded microcarriers displayed sustained-release capacity and reduced cell viabilities to ~30% in both cell lines on Day 12.
Publisher
Scientific Reports
Published On
Dec 10, 2020
Authors
C. T. Pan, S. T. Chien, T. C. Chiang, C. K. Yen, S. Y. Wang, Z. H. Wen, C. Y. Yu, Y. L. Shiue
Tags
calcium alginate
microcarriers
doxorubicin
sustained-release
h hepatocellular carcinoma
TACE
non-toxicity
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny