logo
ResearchBunny Logo
Machine learning-based prediction of COVID-19 diagnosis based on symptoms

Medicine and Health

Machine learning-based prediction of COVID-19 diagnosis based on symptoms

Y. Zoabi, S. Deri-rozov, et al.

Discover a groundbreaking machine-learning model that predicts COVID-19 infection with remarkable accuracy using easily accessible features. This innovative research, conducted by Yazeed Zoabi, Shira Deri-Rozov, and Noam Shomron from Tel Aviv University, aims to enhance COVID-19 testing efficiency, especially in resource-limited settings.

00:00
00:00
~3 min • Beginner • English
Abstract
Effective screening of SARS-CoV-2 enables quick and efficient diagnosis of COVID-19 and can mitigate the burden on healthcare systems. Prediction models that combine several features to estimate the risk of infection have been developed. These aim to assist medical staff worldwide in triaging patients, especially in the context of limited healthcare resources. We established a machine-learning approach that trained on records from 51,831 tested individuals (of whom 4769 were confirmed to have COVID-19). The test set contained data from the subsequent week (47,401 tested individuals of whom 3624 were confirmed to have COVID-19). Our model predicted COVID-19 test results with high accuracy using only eight binary features: sex, age ≥60 years, known contact with an infected individual, and the appearance of five initial clinical symptoms. Overall, based on the nationwide data publicly reported by the Israeli Ministry of Health, we developed a model that detects COVID-19 cases by simple features accessed by asking basic questions. Our framework can be used, among other considerations, to prioritize testing for COVID-19 when testing resources are limited.
Publisher
npj Digital Medicine
Published On
Jan 04, 2021
Authors
Yazeed Zoabi, Shira Deri-Rozov, Noam Shomron
Tags
COVID-19
machine learning
prediction model
clinical symptoms
health data
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny