Intracranial aneurysm is a common life-threatening disease. Computed tomography angiography is recommended as the standard diagnosis tool; yet, interpretation can be time-consuming and challenging. We present a specific deep-learning-based model trained on 1,177 digital subtraction angiography verified bone-removal computed tomography angiography cases. The model has good tolerance to image quality and is tested with different manufacturers. Simulated real-world studies are conducted in consecutive internal and external cohorts, in which it achieves an improved patient-level sensitivity and lesion-level sensitivity compared to that of radiologists and expert neurosurgeons. A specific cohort of suspected acute ischemic stroke is employed and it is found that 99.0% predicted-negative cases can be trusted with high confidence, leading to a potential reduction in human workload. A prospective study is warranted to determine whether the algorithm could improve patients' care in comparison to clinicians' assessment.
Publisher
Nature Communications
Published On
Nov 30, 2020
Authors
Zhao Shi, Chongchang Miao, U. Joseph Schoepf, Rock H. Savage, Danielle M. Dargis, Chengwei Pan, Xue Chai, Xiu Li Li, Shuang Xia, Xin Zhang, Yan Gu, Yonggang Zhang, Bin Hu, Wenda Xu, Changsheng Zhou, Song Luo, Hao Wang, Li Mao, Kongming Liang, Lili Wen, Longjiang Zhou, Yizhou Yu, Guang Ming Lu, Long Jiang Zhang
Tags
intracranial aneurysm
deep learning
computed tomography angiography
diagnostic accuracy
patient care
Related Publications
Explore these studies to deepen your understanding of the subject.