logo
ResearchBunny Logo
Temporal dynamics of the multi-omic response to endurance exercise training

Health and Fitness

Temporal dynamics of the multi-omic response to endurance exercise training

D. Amar, N. R. Gay, et al.

Discover how regular exercise influences health at the molecular level! This enlightening research from a team of experts, including David Amar and Nicole R. Gay, profiles endurance training effects through multi-omic approaches in rats, unveiling insights into immune and metabolic pathways that could revolutionize our understanding of human health.

00:00
00:00
~3 min • Beginner • English
Abstract
Regular exercise promotes whole-body health and prevents disease, but the underlying molecular mechanisms are incompletely understood. Here, the Molecular Transducers of Physical Activity Consortium profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid tissues in male and female Rattus norvegicus over eight weeks of endurance exercise training. The resulting data compendium encompasses 9,466 assays across 19 tissues, 25 molecular platforms and 4 training time points. Thousands of shared and tissue-specific molecular alterations were identified, with sex differences found in multiple tissues. Temporal multi-omic and multi-tissue analyses revealed expansive biological insights into the adaptive responses to endurance training, including widespread regulation of immune, metabolic, stress response and mitochondrial pathways. Many changes were relevant to human health, including non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health and tissue injury and recovery. The data and analyses presented in this study will serve as valuable resources for understanding and exploring the multi-tissue molecular effects of endurance training and are provided in a public repository (https://motrpac-data.org/).
Publisher
Nature
Published On
May 01, 2024
Authors
David Amar, Nicole R. Gay, Pierre M. Jean-Beltran, Dam Bae, Surendra Dasari, Courtney Dennis, Charles R. Evans, David A. Gaul, Olga Ilkayeva, Anna A. Ivanova, Maureen T. Kachman, Ian R. Lanza, Ana C. Lira, Michael J. Muehlbauer, Venugopalan D. Nair, Paul D. Piehowski, Jessica L. Rooney, Kevin S. Smith, Cynthia L. Stowe, Bingqing Zhao, Natalie M. Clark, David Jimenez-Morales, Malene E. Lindholm, Gina M. Many, James A. Sanford, Gregory R. Smith, Nikolai G. Vetr, Tiantian Zhang, Jose J. Almagro Armenteros, Julian Avila-Pacheco, Nasim Bararpour, Yongchao Ge, Zhenxin Hou, Shruti Marwaha, David M. Presby, Archana Natarajan Raja, Evan M. Savage, Alec Steep, Yifei Sun, Si Wu, Jimmy Zhen, Sue C. Bodine, Karyn A. Esser, Laurie J. Goodyear, Simon Schenk, Stephen B. Montgomery, Facundo M. Fernández, Robert E. Gerszten, William E. Kraus, Jun Z. Li, Michael E. Miller, K. Sreekumaran Nair, Christopher Newgard, Eric A. Ortlund, Wei-Jun Qian, Russell Tracy, Martin J. Walsh, Matthew T. Wheeler
Tags
exercise
multi-omic profiling
health improvement
molecular adaptations
endurance training
immune pathways
metabolic alterations
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny