logo
ResearchBunny Logo
Real-time outage management in active distribution networks using reinforcement learning over graphs

Engineering and Technology

Real-time outage management in active distribution networks using reinforcement learning over graphs

R. A. Jacob, S. Paul, et al.

Discover a groundbreaking graph reinforcement learning model for outage management in distribution networks, enhancing resilience like never before! Developed by a team of innovative researchers including Roshni Anna Jacob, Steve Paul, Souma Chowdhury, Yulia R. Gel, and Jie Zhang, this model achieves near-optimal, real-time power restoration performance across various outage scenarios.

00:00
00:00
~3 min • Beginner • English
Abstract
Self-healing smart grids are characterized by fast-acting, intelligent control mechanisms that minimize power disruptions during outages. The corrective actions adopted during outages in power distribution networks include reconfiguration through switching control and emergency load shedding. The conventional decision-making models for outage mitigation are, however, not suitable for smart grids due to their slow response and computational inefficiency. Here, we present a graph reinforcement learning model for outage management in the distribution network to enhance its resilience. The distinctive characteristic of our approach is that it explicitly accounts for the underlying network topology and its variations with switching control, while also capturing the complex interdependencies between state variables (along nodes and edges) by modeling the task as a graph learning problem. Our model learns the optimal control policy for power restoration using a Capsule-based graph neural network. We validate our model on three test networks, namely the 13, 34, and 123-bus modified IEEE networks where it is shown to achieve near-optimal, real-time performance. The resilience improvement of our model in terms of loss of energy is 607.45 kWs and 596.52 kWs for 13 and 34 buses, respectively. Our model also demonstrates generalizability across a broad range of outage scenarios.
Publisher
Nature Communications
Published On
Jun 04, 2024
Authors
Roshni Anna Jacob, Steve Paul, Souma Chowdhury, Yulia R. Gel, Jie Zhang
Tags
graph reinforcement learning
outage management
distribution networks
power restoration
resilience
network topology
energy loss
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny