logo
ResearchBunny Logo
Primordial aqueous alteration recorded in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu

Space Sciences

Primordial aqueous alteration recorded in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu

Y. Takano, H. Naraoka, et al.

Discover the intriguing primordial aqueous alteration signatures found in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu. This research, conducted by a team of scientists including Yoshinori Takano and Hiroshi Naraoka, unveils the prevalence of low-molecular-weight hydroxy acids and dicarboxylic acids, shedding light on the coevolutionary relationship between water and organics in space.

00:00
00:00
~3 min • Beginner • English
Abstract
We report primordial aqueous alteration signatures in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu by the Hayabusa2 spacecraft of JAXA. Newly identified low-molecular-weight hydroxy acids (HO-R-COOH) and dicarboxylic acids (HOOC-R-COOH), such as glycolic acid, lactic acid, glyceric acid, oxalic acid, and succinic acid, are predominant in samples from the two touchdown locations at Ryugu. The quantitative and qualitative profiles for the hydrophilic molecules between the two sampling locations shows similar trends within the order of ppb (parts per billion) to ppm (parts per million). A wide variety of structural isomers, including α- and β-hydroxy acids, are observed among the hydrophilic molecules. We also identify pyruvic acid and dihydroxy and tricarboxylic acids, which are biochemically important intermediates relevant to molecular evolution, such as the primordial TCA (tricarboxylic acid) cycle. Here, we find evidence that the asteroid Ryugu samples underwent substantial aqueous alteration, as revealed by the presence of malonic acid during keto-enol tautomerism in the dicarboxylic acid profile. The comprehensive data suggest the presence of a series for water-soluble organic molecules in the regolith of Ryugu and evidence of signatures in coevolutionary aqueous alteration between water and organics in this carbonaceous asteroid.
Publisher
Nature Communications
Published On
Jul 10, 2024
Authors
Yoshinori Takano, Hiroshi Naraoka, Jason P. Dworkin, Toshiki Koga, Kazunori Sasaki, Hajime Sato, Yasuhiro Oba, Nanako O. Ogawa, Toshihiro Yoshimura, Kenji Hamase, Naohiko Ohkouchi, Eric T. Parker, José C. Aponte, Daniel P. Glavin, Yoshihiro Furukawa, Junken Aoki, Kuniyuki Kano, Shin-ichiro M. Nomura, Francois-Regis Orthous-Daunay, Philippe Schmitt-Kopplin, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Kanako Sakamoto, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei-ichiro Watanabe, Yuichi Tsuda, Shogo Tachibana
Tags
aqueous alteration
organic molecules
carbonaceous asteroid
Ryugu
hydroxy acids
dicarboxylic acids
cosmic chemistry
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny