logo
ResearchBunny Logo
Ocean-forcing of cool season precipitation drives ongoing and future decadal drought in southwestern North America

Earth Sciences

Ocean-forcing of cool season precipitation drives ongoing and future decadal drought in southwestern North America

R. Seager, M. Ting, et al.

This groundbreaking study reveals how cooler tropical Pacific sea surface temperatures are exacerbating drought in the US Southwest by reducing cool-season precipitation and soil moisture. Conducted by leading experts Richard Seager and colleagues, the research highlights critical oceanic influences on future drought conditions through 2040. The implications of these findings are vital for understanding our changing climate.

00:00
00:00
~3 min • Beginner • English
Abstract
The US Southwest is in a drought crisis that has been developing over the past two decades, contributing to marked increases in burned forest areas and unprecedented efforts to reduce water consumption. Climate change has contributed to this ongoing decadal drought via warming that has increased evaporative demand and reduced snowpack and streamflows. However, on the supply side, precipitation has been low during the 21st century. Here, using simulations with an atmosphere model forced by imposed sea surface temperatures, we show that the 21st century shift to cooler tropical Pacific sea surface temperatures forced a decline in cool season precipitation that in turn drove a decline in spring to summer soil moisture in the southwest. We then project the near-term future out to 2040, accounting for plausible and realistic natural decadal variability of the Pacific and Atlantic Oceans and radiatively-forced change. The future evolution of decadal variability in the Pacific and Atlantic will strongly influence how wet or dry the southwest is in coming decades as a result of the influence on cool season precipitation. The worst-case scenario involves a continued cold state of the tropical Pacific and the development of a warm state of the Atlantic while the best case scenario would be a transition to a warm state of the tropical Pacific and the development of a cold state of the Atlantic. Radiatively-forced cool season precipitation reduction is strongest if future forced SST change continues the observed pattern of no warming in the equatorial Pacific cold tongue. Although this is a weaker influence on summer soil moisture than natural decadal variability, no combination of natural decadal variability and forced change ensures a return to winter precipitation or summer soil moisture levels as high as those in the final two decades of the 20th century.
Publisher
npj Climate and Atmospheric Science
Published On
Sep 14, 2023
Authors
Richard Seager, Mingfang Ting, Patrick Alexander, Haibo Liu, Jennifer Nakamura, Cuihua Li, Matthew Newman
Tags
drought
climate change
precipitation
Pacific Ocean
soil moisture
Atlantic variability
future projections
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny