logo
ResearchBunny Logo
Mass Conservative Time-Series GAN for Synthetic Extreme Flood-Event Generation: Impact on Probabilistic Forecasting Models

Earth Sciences

Mass Conservative Time-Series GAN for Synthetic Extreme Flood-Event Generation: Impact on Probabilistic Forecasting Models

D. Karimanzira

Discover how Divas Karimanzira's innovative research harnesses the power of Generative Adversarial Networks to revolutionize flood forecasting. By generating synthetic flood events, this study significantly enhances predictive models, demonstrating a remarkable 9.8% improvement in multi-step forecasts. Explore the future of smarter and more reliable flood management!

00:00
00:00
~3 min • Beginner • English
Abstract
The lack of data on flood events poses challenges in flood management. In this paper, we propose a novel approach to enhance flood-forecasting models by utilizing the capabilities of Generative Adversarial Networks (GANs) to generate synthetic flood events. We modified a time-series GAN by incorporating constraints related to mass conservation, energy balance, and hydraulic principles into the GAN model through appropriate regularization terms in the loss function and by using mass conservative LSTM in the generator and discriminator models. In this way, we can improve the realism and physical consistency of the generated extreme flood-event data. These constraints ensure that the synthetic flood-event data generated by the GAN adhere to fundamental hydrological principles and characteristics, enhancing the accuracy and reliability of flood-forecasting and risk-assessment applications. PCA and t-SNE are applied to provide valuable insights into the structure and distribution of the synthetic flood data, highlighting patterns, clusters, and relationships within the data. We aimed to use the generated synthetic data to supplement the original data and train probabilistic neural runoff model for forecasting multi-step ahead flood events. t-statistic was performed to compare the means of synthetic data generated by TimeGAN with the original data, and the results showed that the means of the two datasets were statistically significant at 95% level. The integration of time-series GAN-generated synthetic flood events with real data improved the robustness and accuracy of the autoencoder model, enabling more reliable predictions of extreme flood events. In the pilot study, the model trained on the augmented dataset with synthetic data from time-series GAN shows higher NSE and KGE scores of NSE = 0.838 and KGE = 0.908, compared to the NSE = 0.829 and KGE = 0.90 of the sixth hour ahead, indicating improved accuracy of 9.8% NSE in multistep-ahead predictions of extreme flood events compared to the model trained on the original data alone. The integration of synthetic training datasets in the probabilistic forecasting improves the model's ability to achieve a reduced Prediction Interval Normalized Average Width (PINAW) for interval forecasting, yet this enhancement comes with a trade-off in the Prediction Interval Coverage Probability (PICP).
Publisher
Stats
Published On
May 07, 2024
Authors
Divas Karimanzira
Tags
flood forecasting
Generative Adversarial Networks
synthetic data
probabilistic neural runoff model
multi-step predictions
time-series analysis
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny