Laser cooling, a technique to slow down atoms using photons, has revolutionized atomic physics. This paper demonstrates, for the first time, laser cooling of antihydrogen, the antimatter counterpart of hydrogen. By exciting the 1s–2p transition with a pulsed Lyman-α laser, researchers Doppler-cooled magnetically trapped antihydrogen, achieving a significant reduction in energy. This breakthrough has substantial implications for antimatter studies, enabling more precise spectroscopy and gravitational measurements, and opening possibilities for future experiments like anti-atomic fountains and anti-atom interferometry.
Publisher
Nature
Published On
Apr 01, 2021
Authors
C. J. Baker, W. Bertsche, A. Capra, C. Carruth, C. L. César, M. Charlton, A. Christensen, R. Collier, A. Cridland Mathad, S. Eriksson, A. Evans, N. Evetts, J. Fajans, T. Friesen, M. C. Fujiyama, R. D. Gilt, P. Grandemange, P. Grann, J. S. Hangs, V. N. Hardy, M. E. Hayden, D. Hodgjkinson, E. Hunter, C. A. Isaac, M. A. Johnson, J. M. Jones, S. A. Jones, S. Jonsell, A. Kharamov, R. Knapp, L. Kurchanov, N. Madsen, D. Maxwell, J. T. K. McKenna, S. Menary, J. M. Michal, T. Momose, P. S. Mullard, J. J. Munich, K. Olchanski, A. Olin, J. Pszka, A. Powell, P. Pusa, C. O. Rasmussen, F. Robicheaux, R. L. Sacramonte, M. Sameed, E. Sarid, D. M. Silveira, D. M. Starko, C. S. O. Sutter, A. Thibeault, R. I. Thompson, D. P. van der Werf, J. S. Wurtzele
Tags
laser cooling
antihydrogen
atomic physics
Doppler cooling
spectroscopy
antimatter
gravitational measurements
Related Publications
Explore these studies to deepen your understanding of the subject.