Bud-break is an economically and environmentally important process in trees and shrubs from boreal and temperate latitudes, but its molecular mechanisms are poorly understood. Here, we show that two previously reported transcription factors, EARLY BUD BREAK 1 (EBB1) and SHORT VEGETATIVE PHASE-Like (SVL) directly interact to control bud-break. EBB1 is a positive regulator of bud-break, whereas SVL is a negative regulator of bud-break. EBB1 directly and negatively regulates SVL expression. We further report the identification and characterization of the EBB3 gene. EBB3 is a temperature-responsive, epigenetically-regulated, positive regulator of bud-break that provides a direct link to activation of the cell cycle during bud-break. EBB3 is an AP2/ERF transcription factor that positively and directly regulates CYCLIND3.1 gene. Our results reveal the architecture of a putative regulatory module that links temperature-mediated control of bud-break with activation of cell cycle.
Publisher
NATURE COMMUNICATIONS
Published On
Feb 18, 2021
Authors
Abdul Azeez, Yiru Chen Zhao, Rajesh Kumar Singh, Yordan S. Yordanov, Madhumita Dash, Pal Miskolczi, Katja Stojkovič, Steve H. Strauss, Rishikesh P. Bhalerao, Victor B. Busov
Tags
bud-break
transcription factors
EBB1
SVL
EBB3
temperature-responsive
cell cycle
Related Publications
Explore these studies to deepen your understanding of the subject.