logo
ResearchBunny Logo
Deep quantum neural networks on a superconducting processor

Physics

Deep quantum neural networks on a superconducting processor

X. Pan, Z. Lu, et al.

This groundbreaking research by Xiaoxuan Pan and colleagues showcases the training of deep quantum neural networks on a six-qubit superconducting processor, achieving remarkable mean fidelity and accuracy. Their findings are pivotal for advancing quantum machine learning applications.

00:00
00:00
~3 min • Beginner • English
Abstract
Deep learning and quantum computing have achieved dramatic progresses in recent years. The interplay between these two fast-growing fields gives rise to a new research frontier of quantum machine learning. In this work, we report an experimental demonstration of training deep quantum neural networks via the backpropagation algorithm with a six-qubit programmable superconducting processor. We experimentally perform the forward process of the back-propagation algorithm and classically simulate the backward process. In particular, we show that three-layer deep quantum neural networks can be trained efficiently to learn two-qubit quantum channels with a mean fidelity up to 96.0% and the ground state energy of molecular hydrogen with an accuracy up to 93.3% compared to the theoretical value. In addition, six-layer deep quantum neural networks can be trained in a similar fashion to achieve a mean fidelity up to 94.8% for learning single-qubit quantum channels. Our experimental results indicate that the number of coherent qubits required to maintain does not scale with the depth of the deep quantum neural network, thus providing a valuable guide for quantum machine learning applications with both near-term and future quantum devices.
Publisher
Nature Communications
Published On
Jul 06, 2023
Authors
Xiaoxuan Pan, Zhide Lu, Weiting Wang, Ziyue Hua, Yifang Xu, Weikang Li, Weizhou Cai, Xuegang Li, Haiyan Wang, Yi-Pu Song, Chang-Ling Zou, Dong-Ling Deng, Luyan Sun
Tags
deep quantum neural networks
backpropagation algorithm
quantum channels
molecular hydrogen
superconducting processor
quantum machine learning
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny