logo
ResearchBunny Logo
Combining machine learning and nanopore construction creates an artificial intelligence nanopore for coronavirus detection

Medicine and Health

Combining machine learning and nanopore construction creates an artificial intelligence nanopore for coronavirus detection

M. Taniguchi, S. Minami, et al.

This groundbreaking research by Masateru Taniguchi and colleagues introduces a cutting-edge method for rapid detection of coronaviruses using nanopores and AI, achieving remarkable sensitivity and specificity in just 5 minutes—all without RNA extraction.

00:00
00:00
~3 min • Beginner • English
Abstract
High-throughput, high-accuracy detection of emerging viruses allows for the control of disease outbreaks. Currently, reverse transcription-polymerase chain reaction (RT-PCR) is currently the most-widely used technology to diagnose the presence of SARS-CoV-2. However, RT-PCR requires the extraction of viral RNA from clinical specimens to obtain high sensitivity. Here, we report a method for detecting novel coronaviruses with high sensitivity by using nanopores together with artificial intelligence, a relatively simple procedure that does not require RNA extraction. Our final platform, which we call the artificially intelligent nanopore, consists of machine learning software on a server, a portable high-speed and high-precision current measuring instrument, and scalable, cost-effective semiconducting nanopore modules. We show that artificially intelligent nanopores are successful in accurately identifying four types of coronaviruses similar in size, HCoV-229E, SARS-CoV, MERS-CoV, and SARS-CoV-2. Detection of SARS-CoV-2 in saliva specimen is achieved with a sensitivity of 90% and specificity of 96% with a 5-minute measurement.
Publisher
Nature Communications
Published On
Jun 17, 2021
Authors
Masateru Taniguchi, Shohei Minami, Chikako Ono, Rina Hamajima, Ayumi Morimura, Shigeto Hamaguchi, Yukihiro Akeda, Yuta Kanai, Takeshi Kobayashi, Wataru Kamitani, Yutaka Terada, Koichiro Suzuki, Nobuaki Hatori, Yoshiaki Yamagishi, Nobuei Washizu, Hiroyasu Takei, Osamu Sakamoto, Norihiko Naono, Kenji Tatematsu, Takashi Washio, Yoshiharu Matsuura, Kazunori Tomono
Tags
coronaviruses
detection
nanopores
artificial intelligence
sensitivity
specificity
saliva samples
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny