logo
ResearchBunny Logo
Beyond the standard quantum limit for parametric amplification of broadband signals

Physics

Beyond the standard quantum limit for parametric amplification of broadband signals

M. Renger, S. Pogorzalek, et al.

A groundbreaking study by M. Renger, S. Pogorzalek, Q. Chen, Y. Nojiri, K. Inomata, Y. Nakamura, M. Partanen, A. Marx, R. Gross, F. Deppe, and K. G. Fedorov reveals that the standard quantum limit for low-noise amplification of weak microwave signals can be surpassed, potentially revolutionizing quantum information processing!

00:00
00:00
~3 min • Beginner • English
Abstract
The low-noise amplification of weak microwave signals is crucial for countless protocols in quantum information processing. Quantum mechanics sets an ultimate lower limit of half a photon to the added input noise for phase-preserving amplification of narrowband signals, also known as the standard quantum limit (SQL). This limit, which is equivalent to a maximum quantum efficiency of 0.5, can be overcome by employing nondegenerate parametric amplification of broadband signals. We show that, in principle, a maximum quantum efficiency of unity can be reached. Experimentally, we find a quantum efficiency of 0.69 ± 0.02, well beyond the SQL, by employing a flux-driven Josephson parametric amplifier and broadband thermal signals. We expect that our results allow for fundamental improvements in the detection of ultraweak microwave signals.
Publisher
npj Quantum Information
Published On
Nov 08, 2021
Authors
M. Renger, S. Pogorzalek, Q. Chen, Y. Nojiri, K. Inomata, Y. Nakamura, M. Partanen, A. Marx, R. Gross, F. Deppe, K. G. Fedorov
Tags
low-noise amplification
microwave signals
quantum information processing
quantum efficiency
parametric amplification
Listen, Learn & Level Up
Over 10,000 hours of research content in 25+ fields, available in 12+ languages.
No more digging through PDFs, just hit play and absorb the world's latest research in your language, on your time.
listen to research audio papers with researchbunny